
USP HPC
Release 0.0.1

Victor Ivamoto

Jun 04, 2021

CONFIGURATION

1 Cluster Architecture 3
1.1 Client configuration . 4
1.2 Server configuration . 13
1.3 Install Google Drive . 20
1.4 Code development . 25
1.5 Tensorflow configuration . 26
1.6 Working with modules . 30
1.7 Slurm . 34
1.8 GPU Usage . 36
1.9 Useful Linux Commands . 43
1.10 Resources for Researchers . 44
1.11 Getting Support . 48
1.12 About . 49
1.13 License . 50

i

ii

USP HPC, Release 0.0.1

High-Performance Computing (HPC) at Universidade de Sao Paulo (USP) comprises two clusters of servers for parallel
and distributed computing for scientific research. Use Python libraries to train machine and deep learning models in a
single server on GPU and scale up to the full cluster for large datasets.

Common attributes:

• Workload manager (Slurm) that schedules jobs in all servers.

• Shared network file system visible to all servers.

• Limited local storage.

• Login node with no GPU in lince cluster.

Cluster aguia contains servers for CPU processing while lince cluster is for GPU processing. Access to the clusters
through shark.

Both clusters allow parallel and distributed computing for scientific purposes, for example training of machine learning
and deep learning models.

This documentation explains how to:

1. Setup a development environment for testing and debugging.

2. Schedule and manage Slurm jobs.

3. Use Python libraries to train machine learning and deep learning models.

This is a quick start guide for new users and may save several hours of searching and testing. Detailed and complete
information on each topic is available in the Internet.

CONFIGURATION 1

USP HPC, Release 0.0.1

2 CONFIGURATION

CHAPTER

ONE

CLUSTER ARCHITECTURE

Cluster aguia:

• 128 servers

• 512GB RAM

• 20 cores

• Intel(R) Xeon(R) CPU E7- 2870 @ 2.40GHz

• 256TB filesystem

Cluster lince:

• 32 servers

• 128GB RAM

• 16 cores

• Intel(R) Xeon(R) E5- 2680 @ 2.70GHz

• 2 GPUs NVIDIA Tesla K20m

• 55TB filesystem

3

USP HPC, Release 0.0.1

1.1 Client configuration

This section shows how to configure a development environment in your computer and how to connect to the servers.
The instructions are for Microsoft Windows 10 and minor changes may be required for other operating systems.

Cluster access is done using command line interface (CLI) via SSH. PuTTY is a free terminal for remote access. This
section shows how to setup PuTTY to connect and create a tunnel for file transfer and remote code execution.

1.1.1 PuTTY Configuration

Download PuTTY from the developer’s website and install in your computer. After installation, open PuTTY:

In the Connection->Data menu, insert your user name (USP number). This avoids PuTTY asking for this on each
login.

4 Chapter 1. Cluster Architecture

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

USP HPC, Release 0.0.1

PuTTY allows to connect directly in lince or aguia after connecting to shark. Just add the command ssh lince2 in
the Remote command field.

1.1. Client configuration 5

USP HPC, Release 0.0.1

You may create a tunnel from your computer directly to aguia or lince for file transfer or to use Jupyter Notebook.
Insert a local port and the port number of the server you will access. For instance, the image below assigns local port
2022 to port 22 in lince2. Port 22 is use for ssh connection and file transfer via sftp. So, to transfer files just use this
command:

$ sftp -P 2022 user@localhost

6 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

Port settings suggestion:

Server Local port Remote port Service
lince2 2022 22 SSH and SFTP
lince2 2888 8888 Jupyter Lab and Jupyter Notebook
aguia4 4022 22 SSH and SFTP
aguia4 4088 8888 Jupyter Lab and Jupyter Notebook

1.1.2 SSH Configuration

SSH uses login and password for authentication, or a pair of public and private keys. The latter case you can connect
directly to the server without entering the password.

Create a pair of public and private keys in your computer to connect to aguia and lince while the tunnel is open. There’s
no need to enter the passphrase, just the default values:

C:\Users\vivam>ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (C:\Users\vivam/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in C:\Users\vivam/.ssh/id_rsa.
Your public key has been saved in C:\Users\vivam/.ssh/id_rsa.pub.
The key fingerprint is:

(continues on next page)

1.1. Client configuration 7

USP HPC, Release 0.0.1

(continued from previous page)

SHA256:jRAhGYfJkD9Zj4ew97SCLImf98m5FiJdhlnKwbK06Jg vivam@DESKTOP-TAO705M
The key's randomart image is:
+---[RSA 2048]----+
| +=o=+* |
| + *oo. |
| o * @.+ |
|. O . *.+o |
|oo + * +S.. |
|E.+ = o o |
| . + . o |
| + .+.o |
| . .*. |
+----[SHA256]-----+

C:\Users\vivam>

The key pair is saved in folder .ssh:

C:\Users\vivam>dir .ssh
O volume na unidade C é OS
O Número de Série do Volume é 963B-B7F6

Pasta de C:\Users\vivam\.ssh

03/04/2021 23:06 <DIR> .
03/04/2021 23:06 <DIR> ..
03/04/2021 23:06 1,679 id_rsa
03/04/2021 23:06 404 id_rsa.pub

2 arquivo(s) 2,083 bytes
2 pasta(s) 8,864,555,008 bytes disponíveis

C:\Users\vivam>

The next step is to append the public key content to the file ~/.ssh/authorized_keys in aguia and lince:

C:\Users\vivam\.ssh>cat id_rsa.pub
ssh-rsa␣
→˓AAAAB3NzaC1yc2EAAAADAQABAAABAQDKdaBWyChrn7wsR6+SolgFV8cPxR3hBdPTjGJgI5prPH25vK6XqSvXq8+mDvdXlBI2w9MQKLNw/
→˓ELu1n2vTFzJIcmAPY1qk8DsynQYU4CzD5+VVh+sMmVrzLUTTZ+3rC3gWWoMSWqn3IwFNiUsHgQhn6HqIzWhaUVyMF62e3YClfSEnc5t5bkaupAgwP4vNWCfdbNjV/
→˓qbUyQoflsd5I/9BgMLj1Tcz+b/SXT866aI5JPmIu9yKZH2b1u/
→˓ZMtFEtydG9UlCxk+Deptlxryi2fIe9wFQuBq1CwZkh0Ikt93SOceksuK6ReW+pJwcocu2MzznCZMAgTiNVvGQAhQxFY7␣
→˓vivam@DESKTOP-TAO705M

C:\Users\vivam\.ssh>

8 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

1.1.3 Test the conection

Open a terminal window and test the connection with SFTP:

(base) C:\Users\vivam>sftp -P 2022 11568881@localhost
Connected to 11568881@localhost.
sftp> pwd
Remote working directory: /scratch/11568881
sftp>

1.1.4 Running remote code

Editing and debugging code in a Linux terminal is not as efficient as in an IDE or in Jupyter. The PyCharm Professional
edition allows remote execution via SSH and won’t be discussed here because it’s a paid version. Microsoft Visual
Studio Code (VS Code) extension Remote - SSH also do the job. VS Code requires OpenSSH, so we’ll install this
first.

1.1.5 Install OpenSSH

The Remote - SSH extension uses OpenSSH; the PuTTY version is not supported.

In Windows 10 settings, open the windows Applications and Resources, then click in Optional Resources and check
wether OpenSSH Client is installed. If it isn’t, click in + Add resource to install.

Open Settings, then go to Apps and click Apps & features. Under “Apps & features,” click the Manage optional
features link.

Click the Add a feature button, select the OpenSSH Client option and click Install.

1.1. Client configuration 9

USP HPC, Release 0.0.1

1.1.6 SSH configuration

Create the ssh_config file in your Windows user’s .ssh folder with this content:

(base) C:\Users\vivam\.ssh>cat config
Read more about SSH config files: https://linux.die.net/man/5/ssh_config
Host lince2

HostName localhost
User <YOUR NUSP>
IdentityFile ~/.ssh/id_rsa
Port 2022

Host aguia4
HostName localhost
User <YOUR NUSP>
IdentityFile ~/.ssh/id_rsa
Port 4022

User is your USP number (NUSP) used to login into the servers and Port is the SSH tunnel port.

1.1.7 VS Code configuration

Install VS Code and the following extensions:

• Remote - SSH (Microsoft)

• Remote - SSH: Editing Configuration Files (Microsoft)

• Jupyter (Microsoft)

• Python (Microsoft)

• Python Extension Pack (Don Jayamanne)

With the Jupyter extension you can edit and execute notebooks in interactive mode, which is handy to make small
tests and debugging.

The Python Extension Pack allows you to run small chunks of code like in Jupyter. It also shows charts and images
in a side bar window. Just insert #%% in a new line to convert the code below in a Jupyter cell, as shown in the image
below.

10 Chapter 1. Cluster Architecture

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh-edit
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh-edit
https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=donjayamanne.python-extension-pack

USP HPC, Release 0.0.1

Prevent data loss while editing code enabling Auto Save:

1.1. Client configuration 11

USP HPC, Release 0.0.1

1.1.8 Test the connection

See details at https://code.visualstudio.com/docs/remote/ssh-tutorial

1.1.9 File transfer with SFTP

SFTP usage:

C:\>sftp
usage: sftp [-46aCfpqrv] [-B buffer_size] [-b batchfile] [-c cipher]

[-D sftp_server_path] [-F ssh_config] [-i identity_file] [-l limit]
[-o ssh_option] [-P port] [-R num_requests] [-S program]
[-s subsystem | sftp_server] destination

SFTP commands:

12 Chapter 1. Cluster Architecture

https://code.visualstudio.com/docs/remote/ssh-tutorial

USP HPC, Release 0.0.1

sftp> help
Available commands:
bye Quit sftp
cd path Change remote directory to 'path'
chgrp grp path Change group of file 'path' to 'grp'
chmod mode path Change permissions of file 'path' to 'mode'
chown own path Change owner of file 'path' to 'own'
df [-hi] [path] Display statistics for current directory or

filesystem containing
→˓'path'
exit Quit sftp
get [-afPpRr] remote [local] Download file
reget [-fPpRr] remote [local] Resume download file
reput [-fPpRr] [local] remote Resume upload file
help Display this help text
lcd path Change local directory to 'path'
lls [ls-options [path]] Display local directory listing
lmkdir path Create local directory
ln [-s] oldpath newpath Link remote file (-s for symlink)
lpwd Print local working directory
ls [-1afhlnrSt] [path] Display remote directory listing
lumask umask Set local umask to 'umask'
mkdir path Create remote directory
progress Toggle display of progress meter
put [-afPpRr] local [remote] Upload file
pwd Display remote working directory
quit Quit sftp
rename oldpath newpath Rename remote file
rm path Delete remote file
rmdir path Remove remote directory
symlink oldpath newpath Symlink remote file
version Show SFTP version
!command Execute 'command' in local shell
! Escape to local shell
? Synonym for help
sftp>

1.2 Server configuration

1.2.1 Install Miniconda and Python libraries

Python libraries installed in HPC are outdated and you may want to use newer releases. This section shows how to
install Miniconda in the user’s home directory, without affecting the original installation.

Miniconda installs the most recent release of Python and pip in the user’s folder. The libraries installed with pip and
conda are also installed in your folder.

All commands shall be executed in the server’s Linux terminal.

1.2. Server configuration 13

USP HPC, Release 0.0.1

Check CUDA release

Before installing the libraries, you need the current CUDA release to choose the right package. Run this command:

$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Wed_Apr_24_19:10:27_PDT_2019
Cuda compilation tools, release 10.1, V10.1.168

The output shows the current release is 10.1.

Install Miniconda

Miniconda is a package management system for Python and provides pip, conda and the most recent Python release
with basic libraries. Miniconda requires less disk space than Anaconda and is faster to install. After installing Mini-
conda, you may install just the libraries that you’ll use. Anaconda installs many packages and applications that won’t
be used.

Select a Miniconda release with the Python version compatible with the libraries that you need, since not all libraries
are compatible with the newest release of Python. For example, the latest release of Tensorflow doesn’t work with the
latest release of Python and CUDA 10.1.

Warning: Check Python, CUDA and libraries compatibility before installing Miniconda. Many libraries only
work with specific Python and CUDA versions.

Access Miniconda website and copy the link with the installation script that you need. This example uses release 3.8.

Use the wget command to download the script with the link you copied from Miniconda site:

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash Miniconda3-latest-Linux-x86_64.sh

14 Chapter 1. Cluster Architecture

https://docs.conda.io/en/latest/miniconda.html#linux-installers

USP HPC, Release 0.0.1

The installation script asks a few questions, just press ENTER to accept the default values and accept the license
terms. When prompted to initialize Miniconda, answer “yes”. This creates the default base environment that will be
automatically activated when you log into the cluster. All libraries will be installed in this environment.

Do you wish the installer to initialize Miniconda3 by running conda init? [yes|no] [no] >>> yes

Now reload ~/.bashrc to update the environment variables and activate the base environment:

$ source ~/.bashrc

Warning: Make sure to select the right environment before installation and always check Python and libraries
after installation.

Install Python libraries for your project. Tensorflow and PyTorch use custom installation which depends on Python and
CUDA versions:

$ conda install -c conda-forge numpy pandas matplotlib scikit-learn

Optionally update the libaries for the most recent version. In this example, Miniconda installed scikit-learn version
0.23 and this command upgrades to 0.24

Update scikit-learn
$ conda upgrade -c conda-forge scikit-learn

Install Tensorflow

From Tensorflow website, select the correct version according to Python and CUDA versions. Since we have Python
3.8 and CUDA 10.1, the best Tensorflow version is 2.3:

$ pip install tensorflow==2.3

Install PyTorch

Similarly, check PyTorch website to install the correct version:

Install PyTorch
1. Version with GPU to install in lince (CUDA 10.1 - Python 3.8)
$ conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch

2. Version without GPU to install in aguia
$ conda install pytorch torchvision torchaudio cpuonly -c pytorch

1.2. Server configuration 15

https://www.tensorflow.org/install/source#linux
https://pytorch.org/

USP HPC, Release 0.0.1

Install Dask

Dask is a library for parallel and distributed computing. Dask’s schedulers scale to thousand-node clusters and its
algorithms have been tested on some of the largest supercomputers in the world. It easily integrates with NumPy,
Pandas and scikit-learn:

$ conda install dask distributed

Install RAPIDS

The RAPIDS suite of open source software libraries and APIs gives you the ability to execute end-to-end data science
and analytics pipelines entirely on GPUs. Use the release selector to get the right installation command:

$ conda install -c rapidsai -c nvidia -c conda-forge rapids-blazing=0.19 python=3.8␣
→˓cudatoolkit=10.1

1.2.2 Installation tests

After installing the libraries, run Python and import the libraries to confirm the correct version:

$ cat system_info.py
#!/scratch/<YOUR_NUSP>/miniconda3/bin/python3
import sys
import numpy as np
import pandas as pd
import matplotlib as mpl
import sklearn as sk

print('='*20, 'Software version', '='*20)
print("Python:", sys.version.split('\n')[0])
print("NumPy:", np.__version__)
print("Pandas:", pd.__version__)
print('Matplotlib:', mpl.__version__)
print("Sklearn:", sk.__version__)

Warning: Check Tensorflow, PyTorch and RAPIDS on the processing node, since the login server doesn’t have
access to GPU.

Lince login node doesn’t provide GPU access, so you need to connect to a processing node to check Tensorflow, PyTorch
and RAPIDS:

$ ssh lince2-001

Once connected in lince2-001, connect to a processing node and make sure that Tensorflow and PyTorch recognize the
GPU:

$ python
Python 3.8.5 (default, Sep 4 2020, 07:30:14)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.

16 Chapter 1. Cluster Architecture

https://dask.org/
https://rapids.ai/index.html
https://rapids.ai/start.html#get-rapids

USP HPC, Release 0.0.1

Check Tensorflow installation

Import Tensorflow:

>>> import tensorflow as tf
2021-05-06 10:09:05.807604: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcudart.so.10.1

Check Tensorflow version:

>>> tf.__version__
'2.3.0'

Check if Tensorflow can list both GPUs:

>>> tf.config.list_physical_devices()
2021-05-06 10:09:19.154886: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcuda.so.1
2021-05-06 10:09:19.167369: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716]␣
→˓Found device 0 with properties:
pciBusID: 0000:05:00.0 name: Tesla K20m computeCapability: 3.5
coreClock: 0.7055GHz coreCount: 13 deviceMemorySize: 4.63GiB deviceMemoryBandwidth: 193.
→˓71GiB/s
2021-05-06 10:09:19.168426: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716]␣
→˓Found device 1 with properties:
pciBusID: 0000:83:00.0 name: Tesla K20m computeCapability: 3.5
coreClock: 0.7055GHz coreCount: 13 deviceMemorySize: 4.63GiB deviceMemoryBandwidth: 193.
→˓71GiB/s
2021-05-06 10:09:19.168477: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcudart.so.10.1
2021-05-06 10:09:19.173624: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcublas.so.10
2021-05-06 10:09:19.176772: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcufft.so.10
2021-05-06 10:09:19.177907: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcurand.so.10
2021-05-06 10:09:19.181156: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcusolver.so.10
2021-05-06 10:09:19.183197: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcusparse.so.10
2021-05-06 10:09:19.188812: I tensorflow/stream_executor/platform/default/dso_loader.
→˓cc:48] Successfully opened dynamic library libcudnn.so.7
2021-05-06 10:09:19.192994: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858]␣
→˓Adding visible gpu devices: 0, 1
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'), PhysicalDevice(name='/
→˓physical_device:XLA_CPU:0', device_type='XLA_CPU'), PhysicalDevice(name='/physical_
→˓device:XLA_GPU:0', device_type='XLA_GPU'), PhysicalDevice(name='/physical_device:XLA_
→˓GPU:1', device_type='XLA_GPU'), PhysicalDevice(name='/physical_device:GPU:0', device_
→˓type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU')]

1.2. Server configuration 17

USP HPC, Release 0.0.1

Check PyTorch installation

Import PyTorch:

>>> import torch

Check PyTorch version:

>>> torch.__version__
'1.7.0'
>>>

Check the number of GPUs available:

>>> torch.cuda.device_count()
2

Check GPU name:

>>> torch.cuda.get_device_name(torch.cuda.current_device())
'Tesla K20m'

Check RAPIDS installation

RAPIDS automatically detects the GPU when you import a library:

>>> import cudf
/scratch/11568881/miniconda3/lib/python3.8/site-packages/cudf/utils/gpu_utils.py:92:␣
→˓UserWarning: You will need a GPU with NVIDIA Pascal™ or newer architecture
Detected GPU 0: Tesla K20m
Detected Compute Capability: 3.5
warnings.warn(

1.2.3 System information

You may need the hardware information to choose the right software release. The following commands show the main
hardware devices and the Linux release. The commands may be executed directly in the Linux terminal, or you may
save in a script and run in SLURM job. Note that PyTorch provides a custom version for each CUDA version:

$ cat system_info.sh
#!/usr/bin/bash
echo ========================
echo SLURM: ID of job allocation
echo ========================
echo $SLURM_JOB_ID # ID of job allocation

echo ========================
echo SLURM: Directory job where was submitted
echo ========================
echo $SLURM_SUBMIT_DIR # Directory job where was submitted

echo ========================
(continues on next page)

18 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

(continued from previous page)

echo SLURM: File containing allocated hostnames
echo ========================
echo $SLURM_JOB_NODELIST # File containing allocated hostnames

echo ========================
echo SLURM: Total number of cores for job
echo ========================
echo $SLURM_NTASKS # Total number of cores for job

echo ========================
echo SLURM: GPU devide ID that assigned to the job to use
echo ========================
echo $CUDA_VISIBLE_DEVICES

echo ========================
echo Hostname
echo ========================
hostname

echo ========================
echo Memory Info \(GB\):
echo ========================
free -g

echo ========================
echo CPU Info:
echo ========================
lscpu

echo ========================
echo Disk space
echo ========================
df -h

echo ========================
echo GPU 1
echo ========================
nvidia-smi

echo ========================
echo GPU 2
echo ========================
lshw -C display

echo ========================
echo CUDA Version
echo ========================
nvcc --version

echo ========================
echo Linux version
echo ========================

(continues on next page)

1.2. Server configuration 19

USP HPC, Release 0.0.1

(continued from previous page)

cat /etc/os-release

echo ========================
echo PATH
echo ========================
echo $PATH

echo ========================
echo Python
echo ========================
which python
which python3

echo ========================
echo Conda
echo ========================
which conda
conda --version

echo ========================
echo Pip
echo ========================
which pip
pip --version

echo ========================
echo Python Library Versions
echo ========================
python system_info.py

1.3 Install Google Drive

Since data in the server are deleted periodically, keeping an external backup makes the recover easy. Storing in Google
Drive is handy since the USP account has unlimited storage. This section shows how to access Google Drive in lince
with gdrive.

Caution: Anyone with access to gdrive may access your files in Google Drive. If you have sensitive information
in your USP account, create another Google account just to store HPC backups.

According to the developer, gdrive is no longer maintained although it’s still possible to connect and sync folders with
Google Drive.

Steps:

1. Create Google credentials

2. Download GDrive

3. Edit configuration

4. Code compilation

20 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

5. Access GDrive

First you need to create a credential in Google to give permission for an application access GDrive. When you do this,
you’ll receive an ID and a key. This step is done only once. Follow the instructions in this site .

1.3.1 Download GDrive

Run all Linux commands in the server. The GDrive code was written in go and may be downloaded from GitHub with
this command:

$ go get github.com/prasmussen/gdrive

1.3.2 Edit configuration

The code will be downloaded to the folder ~/go/src/github.com/prasmussen/gdrive. Go to this folder, open
the file handlers_drive.go with a text editor of your choice and update the following lines with the credentials you
got from the previous step:

const ClientId = "367116221053-7n0v**.apps.googleusercontent.com"
const ClientSecret = "1qsNodXN*****jUjmvhoO"

1.3.3 Code compilation

Now, compile the code in this folder with the following command. No message should appear after running it:

$ go build

The gdrive file is created in this folder. Change permission to make it executable:

$ chmod 755 gdrive

1.3.4 Access GDrive

Run the gdrive list command to start the authentication process:

$./gdrive list
Authentication needed
Go to the following url in your browser:
https://accounts.google.com/o/oauth2/auth?access_type=offl...
Enter verification code:

Copy and paste the link in your browser to allow access. After inserting the verification code, the root folder in your
Google Drive is listed in terminal. Then, move the gdrive file to folder ~/.local/bin:

$ mkdir ~/.local/bin
$ mv ~/go/src/github.com/prasmussen/gdrive/gdrive ~/.local/bin

The complete list of options in gdrive is available at the developer’s website .

1.3. Install Google Drive 21

https://github.com/mbrother2/backuptogoogle/wiki/Create-own-Google-credential-step-by-step
https://github.com/prasmussen/gdrive

USP HPC, Release 0.0.1

1.3.5 Folder synchronization

gdrive creates a fileId for each file and folder stored in drive. Use this fileId to sync a folder. In this example,
the fileId is 0B3X9GlR6EmbnOEd6cEh6bU9XZWM and the folder _release/bin is being synced.

Create directory on drive:

$ gdrive mkdir drive-bin
Directory 0B3X9GlR6EmbnOEd6cEh6bU9XZWM created

Sync to drive:

$ gdrive sync upload _release/bin 0B3X9GlR6EmbnOEd6cEh6bU9XZWM
Starting sync...
Collecting local and remote file information...
Found 32 local files and 0 remote files

6 remote directories are missing
[0001/0006] Creating directory drive-bin/bsd
[0002/0006] Creating directory drive-bin/linux
[0003/0006] Creating directory drive-bin/osx
[0004/0006] Creating directory drive-bin/plan9
[0005/0006] Creating directory drive-bin/solaris
[0006/0006] Creating directory drive-bin/windows

26 remote files are missing
[0001/0026] Uploading bsd/gdrive-dragonfly-x64 -> drive-bin/bsd/gdrive-dragonfly-x64
[0002/0026] Uploading bsd/gdrive-freebsd-386 -> drive-bin/bsd/gdrive-freebsd-386
[0003/0026] Uploading bsd/gdrive-freebsd-arm -> drive-bin/bsd/gdrive-freebsd-arm
[0004/0026] Uploading bsd/gdrive-freebsd-x64 -> drive-bin/bsd/gdrive-freebsd-x64
[0005/0026] Uploading bsd/gdrive-netbsd-386 -> drive-bin/bsd/gdrive-netbsd-386
[0006/0026] Uploading bsd/gdrive-netbsd-arm -> drive-bin/bsd/gdrive-netbsd-arm
[0007/0026] Uploading bsd/gdrive-netbsd-x64 -> drive-bin/bsd/gdrive-netbsd-x64
[0008/0026] Uploading bsd/gdrive-openbsd-386 -> drive-bin/bsd/gdrive-openbsd-386
[0009/0026] Uploading bsd/gdrive-openbsd-arm -> drive-bin/bsd/gdrive-openbsd-arm
[0010/0026] Uploading bsd/gdrive-openbsd-x64 -> drive-bin/bsd/gdrive-openbsd-x64
[0011/0026] Uploading linux/gdrive-linux-386 -> drive-bin/linux/gdrive-linux-386
[0012/0026] Uploading linux/gdrive-linux-arm -> drive-bin/linux/gdrive-linux-arm
[0013/0026] Uploading linux/gdrive-linux-arm64 -> drive-bin/linux/gdrive-linux-arm64
[0014/0026] Uploading linux/gdrive-linux-mips64 -> drive-bin/linux/gdrive-linux-mips64
[0015/0026] Uploading linux/gdrive-linux-mips64le -> drive-bin/linux/gdrive-linux-
→˓mips64le
[0016/0026] Uploading linux/gdrive-linux-ppc64 -> drive-bin/linux/gdrive-linux-ppc64
[0017/0026] Uploading linux/gdrive-linux-ppc64le -> drive-bin/linux/gdrive-linux-ppc64le
[0018/0026] Uploading linux/gdrive-linux-x64 -> drive-bin/linux/gdrive-linux-x64
[0019/0026] Uploading osx/gdrive-osx-386 -> drive-bin/osx/gdrive-osx-386
[0020/0026] Uploading osx/gdrive-osx-arm -> drive-bin/osx/gdrive-osx-arm
[0021/0026] Uploading osx/gdrive-osx-x64 -> drive-bin/osx/gdrive-osx-x64
[0022/0026] Uploading plan9/gdrive-plan9-386 -> drive-bin/plan9/gdrive-plan9-386
[0023/0026] Uploading plan9/gdrive-plan9-x64 -> drive-bin/plan9/gdrive-plan9-x64
[0024/0026] Uploading solaris/gdrive-solaris-x64 -> drive-bin/solaris/gdrive-solaris-x64
[0025/0026] Uploading windows/gdrive-windows-386.exe -> drive-bin/windows/gdrive-windows-
→˓386.exe
[0026/0026] Uploading windows/gdrive-windows-x64.exe -> drive-bin/windows/gdrive-windows-
→˓x64.exe (continues on next page)

22 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

(continued from previous page)

Sync finished in 1m18.891946279s

Add new local file:

$ echo "google drive binaries" > _release/bin/readme.txt

Sync again:

$ gdrive sync upload _release/bin 0B3X9GlR6EmbnOEd6cEh6bU9XZWM
Starting sync...
Collecting local and remote file information...
Found 33 local files and 32 remote files

1 remote files are missing
[0001/0001] Uploading readme.txt -> drive-bin/readme.txt
Sync finished in 2.201339535s

Modify local file:

$ echo "for all platforms" >> _release/bin/readme.txt

Sync again:

$ gdrive sync upload _release/bin 0B3X9GlR6EmbnOEd6cEh6bU9XZWM
Starting sync...
Collecting local and remote file information...
Found 33 local files and 33 remote files

1 local files has changed
[0001/0001] Updating readme.txt -> drive-bin/readme.txt
Sync finished in 1.890244258s

1.3.6 List of options

Use the command gdrive help to list the available options:

$ gdrive help
gdrive usage:

gdrive [global] list [options] List files
gdrive [global] download [options] <fileId> Download file or directory
gdrive [global] download query [options] <query> Download all files and␣
→˓directories matching query
gdrive [global] upload [options] <path> Upload file or directory
gdrive [global] upload - [options] <name> Upload file from stdin
gdrive [global] update [options] <fileId> <path> Update file, this creates␣
→˓a new revision of the file
gdrive [global] info [options] <fileId> Show file info
gdrive [global] mkdir [options] <name> Create directory
gdrive [global] share [options] <fileId> Share file or directory
gdrive [global] share list <fileId> List files permissions
gdrive [global] share revoke <fileId> <permissionId> Revoke permission

(continues on next page)

1.3. Install Google Drive 23

USP HPC, Release 0.0.1

(continued from previous page)

gdrive [global] delete [options] <fileId> Delete file or directory
gdrive [global] sync list [options] List all syncable␣
→˓directories on drive
gdrive [global] sync content [options] <fileId> List content of syncable␣
→˓directory
gdrive [global] sync download [options] <fileId> <path> Sync drive directory to␣
→˓local directory
gdrive [global] sync upload [options] <path> <fileId> Sync local directory to␣
→˓drive
gdrive [global] changes [options] List file changes
gdrive [global] revision list [options] <fileId> List file revisions
gdrive [global] revision download [options] <fileId> <revId> Download revision
gdrive [global] revision delete <fileId> <revId> Delete file revision
gdrive [global] import [options] <path> Upload and convert file␣
→˓to a google document, see 'about import' for available conversions
gdrive [global] export [options] <fileId> Export a google document
gdrive [global] about [options] Google drive metadata,␣
→˓quota usage
gdrive [global] about import Show supported import␣
→˓formats
gdrive [global] about export Show supported export␣
→˓formats
gdrive version Print application version
gdrive help Print help
gdrive help <command> Print command help
gdrive help <command> <subcommand> Print subcommand help

1.3.7 Schedule daily backup

Schedule daily backup of your folder with crontab. Use this template:

$ crontab -e
Crontab - Crontab template to automate virtual world
Template from https://gist.github.com/bretonics/9a48a3b9ef32d93d15f45c3f007550b4
Andrés Bretón ~ http://andresbreton.com, dev@andresbreton.com
#
==
.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .---------- day of month (1 - 31)
| | | .------- month (1 - 12) OR jan,feb,mar,apr ...
| | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
| | | | | + command
* * * * * CMD
==
#
Set Path
PATH=/bin:/usr/bin:/usr/local/bin:/scratch/<USER_ID>
#
Backup of work folder daily at 02:00 AM
(change NUSP, folder name and fileId)

(continues on next page)

24 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

(continued from previous page)

00 02 * * * /scratch/<Seu NUSP>/.local/bin/gdrive sync upload _release/bin␣
→˓0B3X9GlR6EmbnOEd6cEh6bU9XZWM > backup.log 2>&1

1.4 Code development

The job scheduled in HPC goes to the last position in a queue that may take several days to start execution. For this
reason, HPC is not suited for testing and debugging. This sections shows how to create a test environment and schedule
a job.

1.4.1 Test and debug

The GPU is disabled in the login node of lince, and this node is used mainly for job schedule. A feasible alternative is
to test and debug in Google Colab or Kaggle before submitting to SLURM.

An easy way to distinguish between debug and production modes is the use of and environment variable, for example
DEBUG_MODE. In debug mode, the code loads a subset of the dataset and runs for a few epochs, since the goal is just
make sure the code is error free. Then, in production mode the code processes the entire dataset and full epochs. In
production mode you may also want to test several model architectures. The examples in this section show how to test
an autoencoder with different number of layers.

Insert this piece of code in the first cell of Google Colab. The second line enables debug mode, and the third and fourth
lines are the model configuration.:

import os
os.environ['DEBUG_MODE'] = 'true'
os.environ['AE_ARCH'] = '1_2_4_6_8_10_12' # Number of filters in each layer
os.environ['AE_KERNEL'] = '5_5_3_3_3_3_3' # Filter size in each layer

You may want to test in VS Code before sending the script to SLURM. This can be done by setting the debug mode as
default when you login, and just disable in the schedule script.

Enable debug mode in lince inserting this code in your ~/.bashrc file:

export DEBUG_MODE=TRUE #
export AE_ARCH=1_2_4_6_8_10_12 # Number of filters in each autoencoder layer
export AE_KERNEL=5_5_3_3_3_3_3 # Filter size in each layer

Read the debug mode in the Python script body:

Debug mode is lightweight components to be able to run in Google Colab
debug_mode = os.getenv('DEBUG_MODE').title() in ['True', '1']

Set 5 epochs in debug mode and 5000 otherwise:

num_epochs = 5 * debug_mode or 5000

1.4. Code development 25

USP HPC, Release 0.0.1

1.4.2 Google Colab setup

In the first cell of Colab, insert this code to mount GDrive in Colab:

Mount Google Drive
from google.colab import drive
drive.mount("/content/drive")

Now you have access to the scripts in lince saved in Drive. Example of code to copy scripts from GDrive to Colab:

import os
os.system('cp /content/drive/MyDrive/<FOLDER>/*.py .')

Copy trained models from folder model/<MODEL_NAME> to Drive:

import os, glob

def save_models_GDrive():
Create folder to save models
for fdir in glob.glob('model/*'):

gdir = '/content/drive/MyDrive/lince-colab/' + fdir.split('/')[1]
if not os.path.exists(gdir):
os.system('mkdir {}'.format(gdir))

Copy trained models do Google Drive
for model in glob.glob('model/*/*'):

fdir = model.split('/')[1]
fname = model.split('/')[2]
cmd = 'cp model/{}/{} /content/drive/MyDrive/lince-colab/{}/{}'.format(fdir,␣

→˓fname, fdir, fname)
print(cmd)
os.system(cmd)

1.5 Tensorflow configuration

Reduce training time with proper Tensorflow and system configuration. This section covers the following topics:

1. Install Tensorflow optimized for performance

2. Save the model

3. Data format

4. OpenMP parameters

5. CPU optimization

6. GPU optimization

7. Compiler optimization

8. Distributed computing

26 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

1.5.1 Tensorflow installation

Intel created a Tensorflow version optimized for CPU. Use this installation if you won’t use GPU:

$ conda install tensorflow -c intel
$ pip install intel-tensorflow==2.4.0

Read full instructions at Intel website.

1.5.2 Save the model

It’s possible to create checkpoints to save the model during training after each epoch, then resume the training from the
last checkpoint. This is useful if the training time is larger than the scheduled time, or to prevent hardware failure or
broken connection. Saving the model after training for later use is also possible.

Follow the instructions in this tutorial to save the model.

1.5.3 Data format

Tensorflow stores and processes image arrays with the channel in the last dimension (channel last), also known as
NHWC. The format used by Intel is channel last, or NCHW. The meaning of each letter is:

• N: Batch size, indicating number of images in a batch.

• C: Channel, indicating number of channels in an image.

• W: Width, indicating number of pixels in horizontal dimension of an image.

• H: Height, indicating number of pixels in vertical dimension of an image.

When training on Intel CPU only, force Tensorflow to use channel first with this code:

import tensorflow as tf
force channels-first ordering
keras.backend.set_image_data_format('channels_first')

1.5.4 OpenMP settings

OpenMP implements parallel computing among different processors. Intel recommends the use these environment
variables to configure OpenMP. For convenience, save them in your ~/.bashrc file or setup in Python.

• OMP_NUM_THREADS

– Maximum number of threads to use for OpenMP parallel regions if no other value is specified in the
application.

– Recommend: start with the number of physical cores/socket on the test system, and try increasing and
decreasing

• KMP_BLOCKTIME

– Time, in milliseconds, that a thread should wait, after completing the execution of a parallel region,
before sleeping.

– Recommend: start with 1 and try increasing

• KMP_AFFINITY

1.5. Tensorflow configuration 27

https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html#Anaconda_main_linux
https://www.tensorflow.org/tutorials/keras/save_and_load
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html#Anaconda_main_linux
https://software.intel.com/content/www/us/en/develop/articles/guide-to-tensorflow-runtime-optimizations-for-cpu.html

USP HPC, Release 0.0.1

– Restricts execution of certain threads to a subset of the physical processing units in a multiprocessor
computer. Only valid if Hyperthreading is enabled.

– Recommend: granularity=fine,verbose,compact,1,0

• KMP_SETTINGS

– Enables (TRUE) or disables (FALSE) printing of OpenMP run-time library environment variables
during execution

– Recommend: Start with TRUE to ensure settings are being utilized, then use as needed

Python example:

import os
os.environ["OMP_NUM_THREADS"] = "8" # Number of physical cores
os.environ["KMP_AFFINITY"] = "granularity=fine,compact,1,0"
os.environ["KMP_BLOCKTIME"] = "0" #(or 1)
os.environ["KMP_SETTINGS"] = "TRUE"

1.5.5 CPU optimization

Set the number of CPU cores that Tensorflow can use with these parameters:

• intra_op_parallelism_threads

– Number of threads used within an individual op for parallelism

– Recommend: start with the number of cores/socket on the test system, and try increasing and decreas-
ing

• inter_op_parallelism_threads

– Number of threads used for parallelism between independent operations.

– Recommend: start with the number of physical cores on the test system, and try increasing and de-
creasing

• device_count

– Maximum number of devices (CPUs in this case) to use

– Recommend: start with the number of cores/socket on the test system, and try increasing and decreas-
ing

• allow_soft_placement

– Set to True/enabled to facilitate operations to be placed on CPU instead of GPU

Example:

import tensorflow as tf
tf.config.threading.set_inter_op_parallelism_threads(8) # Use 8 physical cores
tf.config.threading.set_intra_op_parallelism_threads(8) # Use 8 physical cores
tf.config.set_soft_device_placement(True)

Reference: https://software.intel.com/content/www/us/en/develop/articles/guide-to-tensorflow-runtime-optimizations-for-cpu.
html

28 Chapter 1. Cluster Architecture

https://software.intel.com/content/www/us/en/develop/articles/guide-to-tensorflow-runtime-optimizations-for-cpu.html
https://software.intel.com/content/www/us/en/develop/articles/guide-to-tensorflow-runtime-optimizations-for-cpu.html

USP HPC, Release 0.0.1

1.5.6 GPU optimization

Insert this code in Google Colab to make sure GPU is enabled:

import tensorflow as tf
Show available devices: CPU and GPU
print(tf.config.list_physical_devices())

Check that we are using a GPU, if not switch runtimes
using Runtime > Change Runtime Type > GPU
assert len(tf.config.list_physical_devices('GPU')) > 0

1.5.7 Compiler optimization

XLA (Accelerated Linear Algebra) is a domain-specific compiler for linear algebra that can accelerate TensorFlow mod-
els with potentially no source code changes. Enable XLA in Python or save the environment variable in `` ~/.bashrc``:

import os
os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices'

1.5.8 Pipeline optimization

Data input pipeline used during training may impact performance. An efficient pipeline reads data from disk for the
next batch while the GPU processes the current batch.

See how to achieve better performance with the tf.data API to build an optimized data pipeline.

1.5.9 Distributed computing

Tensorflow can distribute computing in more than one GPU in the same computer or in several servers.

This example shows how to enable distributed computing in one or more GPUs or use the default strategy if no GPU
is found:

import tensorflow as tf
Distributed training: GPU settings
if tf.config.list_physical_devices('GPU'):
strategy = tf.distribute.MirroredStrategy()

else: # use default strategy
strategy = tf.distribute.get_strategy()

Then use the strategy to create the model, optimizer and compile the model:

with strategy.scope():
optimizer = tf.keras.optimizers.SGD()
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])
model.compile(loss='mse', optimizer=optimizer)

See distributed training with TensorFlow for complete explanation about distributed computing.

1.5. Tensorflow configuration 29

https://www.tensorflow.org/xla
https://www.tensorflow.org/guide/data_performance
https://www.tensorflow.org/guide/distributed_training
https://www.tensorflow.org/tutorials/distribute/keras
https://www.tensorflow.org/guide/distributed_training

USP HPC, Release 0.0.1

1.6 Working with modules

Modules are a convenient way to manage environment variables for applications use. Unless you use the default instal-
lation of Anaconda available in HPC, you’ll need to create custom modules. This section briefly explains how to work
with modules and provides a custom module for Miniconda. See the references1 to learn more about modules.

Environment modules set environment variables with specific values for each application. Run module avail to list all
modules available:

$ module avail

-- /opt/ohpc/pub/
→˓moduledeps/gnu7-openmpi3 --
→˓--

adios/1.13.1 imb/2018.1 netcdf-cxx/4.3.0 phdf5/1.10.2 py2-
→˓scipy/1.1.0 scalasca/2.3.1 superlu_dist/5.3.0

boost/1.67.0 (D) mfem/3.3.2 netcdf-fortran/4.4.4 pnetcdf/1.9.0 py3-
→˓mpi4py/3.0.0 scorep/4.0 tau/2.27.1

fftw/3.3.7 mpiP/3.4.1 netcdf/4.6.1 ptscotch/6.0.4 py3-
→˓scipy/1.1.0 sionlib/1.7.1 trilinos/12.12.1

hypre/2.14.0 mumps/5.1.2 petsc/3.9.1 py2-mpi4py/3.0.0 ␣
→˓scalapack/2.0.2 slepc/3.9.1

-- /opt/ohpc/pub/
→˓moduledeps/gnu7 ---

R/3.5.0 hdf5/1.10.2 mpich/3.2.1 openblas/0.2.20 openmpi3/3.1.0 (L) py2-
→˓numpy/1.14.3 superlu/5.2.1

gsl/2.4 metis/5.1.0 ocr/1.0.1 openmpi/1.10.7 pdtoolkit/3.25 py3-
→˓numpy/1.14.3

-- /opt/ohpc/pub/
→˓modulefiles ---

EasyBuild/3.8.1 clustershell/1.8 gnu7/7.3.0 (L) intel/19.0.4.243 ␣
→˓ papi/5.6.0 singularity/3.1.0

autotools (L) cmake/3.13.4 gnu8/8.3.0 llvm5/5.0.1 ␣
→˓ pmix/2.2.2 valgrind/3.14.0

charliecloud/0.9.7 gnu/5.4.0 hwloc/2.0.3 ohpc (L)␣
→˓ prun/1.3 (L)

-- /apps/
→˓modulefiles ---

Anaconda/2-2019.03 Gromacs/5.1.4-cuda-mpi Gromacs/2019.3-cuda (D) amber/
→˓19-cpu canal/1.5 lammps/7Aug19 mkl/2019.4.243

Anaconda/3-2019.03 (D) Gromacs/5.1.4-cuda Gromacs/2019.3-mpi amber/
→˓19-gpu curves/3.0 lammps/29Oct20 (D) ox/8.02-0-gnu

Gromacs/4.0.7 Gromacs/5.1.4-mpi NAMD/2.13-CUDA amber/
→˓20-gpu (D) dssp magma/2.5.1 pgi/19.10

Gromacs/4.6.7 Gromacs/2018.3-cuda amber/18 boost/
→˓1_71_0 g_mmpbsa megacc/10.2.5 relion/3.1

--- /opt/
→˓modulefiles ---

(continues on next page)

1 References:

30 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

(continued from previous page)

cuda/8.0 cuda/10.0 cuda/10.1 (L,D)

Where:
D: Default Module
L: Module is loaded

Use "module spider" to find all possible modules.
Use "module keyword key1 key2 ..." to search for all possible modules matching any of␣
→˓the "keys".

Notice that default modules have a (D) besides the name and loaded modules come with a (L). You can load a module
with module load:

$ module load Anaconda/3-2019.03

Clean all loaded modules with module purge:

$ module purge

Run module show to list the commands executed in the module:

$ module show Anaconda/3-2020.11

→˓---

/opt/ohpc/pub/modulefiles/Anaconda/3-2020.11.lua:

→˓---
help([[This module loads /scratch/apps/gnu/anaconda3
]])
conflict("Anaconda","Anaconda3","anaconda","python")
setenv("INSTALL_DIR","/scratch/apps/gnu/anaconda3")
prepend_path("LD_LIBRARY_PATH","/scratch/apps/gnu/anaconda3")
prepend_path("LD_LIBRARY_PATH","/scratch/apps/gnu/anaconda3/libexec")
prepend_path("INCLUDE","/scratch/apps/gnu/anaconda3/include")
prepend_path("PATH","/scratch/apps/gnu/anaconda3/sbin")
prepend_path("PATH","/scratch/apps/gnu/anaconda3/bin")

1.6.1 Create custom module

You can create custom modules to modify the environment variables. The custom module presented here is a copy of
lince’s Anaconda/3-2019 module modified for Miniconda.

Custom modules are saved in the modulefiles folder. The folder structure is modulefiles/<app_name>/
<version>, where <app_name> is the application name and <version> is the module version. Actually, it may
be any name but we use this convention for simplicity.

$ mkdir -p ~/modulefiles/Miniconda/

Now, use a text editor such as vim or nano to create the file 1.0 with the following content.:

$ cd ~/modulefiles/Miniconda
use a text editor to create the module file called 1.0 (which is the version)

(continues on next page)

1.6. Working with modules 31

USP HPC, Release 0.0.1

(continued from previous page)

$ cat 1.0
#%Module#######################################

set INSTALL_DIR /scratch/<YOUR_NUSP>/miniconda3

conflict pyhton anaconda Anaconda miniconda Miniconda

prepend-path PATH ${INSTALL_DIR}/bin
prepend-path INCLUDE ${INSTALL_DIR}/include/
prepend-path -d " " CPPFLAGS -I${INSTALL_DIR}/include
prepend-path -d " " LDFLAGS -L${INSTALL_DIR}/lib
prepend-path LD_LIBRARY_PATH ${INSTALL_DIR}/lib
prepend-path MANPATH ${INSTALL_DIR}/share/man

Where YOUR_NUSP is your user id.

1.6.2 Add the module path to MODULEPATH

Now that the module file has been created, one just needs to add the following line to your ~/.bashrc file so that it
will be found:

module use --append /scratch/<USER_ID>/modulefiles/

The next time you log in you will be able to run module avail or module load on the new module.

You also need to add these lines in your SLURM schedule script to load the environment variables:

module use --append /scratch/<USER_ID>/modulefiles/
module load Miniconda/1.0

1.6.3 Module usage

Just run module to list all available options:

$ module

Modules based on Lua: Version 7.8.15 2019-01-16 12:46 -06:00
by Robert McLay mclay@tacc.utexas.edu

module [options] sub-command [args ...]

Help sub-commands:

help prints this message
help module [...] print help message from module(s)

Loading/Unloading sub-commands:

load | add module [...] load module(s)
try-load | try-add module [...] Add module(s), do not complain if not found
del | unload module [...] Remove module(s), do not complain if not found

(continues on next page)

32 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

(continued from previous page)

swap | sw | switch m1 m2 unload m1 and load m2
purge unload all modules
refresh reload aliases from current list of modules.
update reload all currently loaded modules.

Listing / Searching sub-commands:

list List loaded modules
list s1 s2 ... List loaded modules that match the pattern
avail | av List available modules
avail | av string List available modules that contain "string".
spider List all possible modules
spider module List all possible version of that module file
spider string List all module that contain the "string".
spider name/version Detailed information about that version of the␣

→˓module.
whatis module Print whatis information about module
keyword | key string Search all name and whatis that contain "string".

Searching with Lmod:

All searching (spider, list, avail, keyword) support regular expressions:

-r spider '^p' Finds all the modules that start with `p' or `P'
-r spider mpi Finds all modules that have "mpi" in their name.
-r spider 'mpi$ Finds all modules that end with "mpi" in their name.

Handling a collection of modules:

save | s Save the current list of modules to a user defined

→˓"default" collection.
save | s name Save the current list of modules to "name"␣

→˓collection.
reset The same as "restore system"
restore | r Restore modules from the user's "default" or system␣

→˓default.
restore | r name Restore modules from "name" collection.
restore system Restore module state to system defaults.
savelist List of saved collections.
describe | mcc name Describe the contents of a module collection.
disable name Disable a collection.

Deprecated commands:

getdefault [name] load name collection of modules or user's "default"␣

→˓if no name given.
===> Use "restore

→˓" instead <====
setdefault [name] Save current list of modules to name if given,␣

→˓otherwise save as the default list for you the
user.

(continues on next page)

1.6. Working with modules 33

USP HPC, Release 0.0.1

(continued from previous page)

===> Use "save"␣
→˓instead. <====

Miscellaneous sub-commands:

is-loaded modulefile return true if module is loaded
is-avail modulefile return true if module can be loaded
show modulefile show the commands in the module file.
use [-a] path Prepend or Append path to MODULEPATH.
unuse path remove path from MODULEPATH.
tablelist output list of active modules as a lua table.

Important Environment Variables:

LMOD_COLORIZE If defined to be "YES" then Lmod prints properties␣

→˓and warning in color.

→˓---

Lmod Web Sites

Documentation: http://lmod.readthedocs.org
Github: https://github.com/TACC/Lmod
Sourceforge: https://lmod.sf.net
TACC Homepage: https://www.tacc.utexas.edu/research-development/tacc-projects/lmod

To report a bug please read http://lmod.readthedocs.io/en/latest/075_bug_reporting.html

→˓---

https://researchcomputing.princeton.edu/support/knowledge-base/modules

https://researchcomputing.princeton.edu/support/knowledge-base/custom-modules

1.7 Slurm

Slurm Workload Manager is an open source, fault-tolerant, and highly scalable cluster management and job scheduling
system for large and small Linux clusters. It is used by many of the world’s supercomputers and computer clusters.

Slurm manages the amount of resources allocated to each job. The number of nodes, CPU cores, memory, GPUs and
period are examples of resources one can allocate to a particular job. This is ideal for distributed computing among
several nodes.

Machine learning and deep learning models can be trained in HPC with Tensorflow, PyTorch, Dask or other distributed
computing library.

Read the official Quick Start User Guide for an overview of the architecture, commands and examples.

Princeton Research Computing also provides a good introduction to Slurm.

34 Chapter 1. Cluster Architecture

https://researchcomputing.princeton.edu/support/knowledge-base/modules
https://researchcomputing.princeton.edu/support/knowledge-base/custom-modules
https://slurm.schedmd.com/quickstart.html
https://researchcomputing.princeton.edu/support/knowledge-base/slurm

USP HPC, Release 0.0.1

1.7.1 Commands

This introductory video shows some useful commands.

https://youtu.be/U42qlYkzP9k

Here’s a list of some commonly used user commands. See Slurm man pages for a complete list of commands or
download the command summary PDF. Note that all Slurm commands start with ‘s’.

Command Description
sbatch <slurm_script> Submit a job script for later execution.
scancel <jobid> Cancel a pending or running job or job step
srun Parallel job launcher (Slurm analog of mpirun)
squeue Show all jobs in the queue
squeue -u <username> Show jobs in the queue for a specific user
squeue –start Report the expected start time for pending jobs
squeue -j <jobid> Show the nodes allocated to a running job
scontrol show config View default parameter settings
sinfo Show cluster status

1.7.2 Job schedule

Submit a script to the queue with sbatch <script>:

$ sbatch script.sh

The options of sbatch command may be inserted into the script following the #SBATCH directive:

$ cat script.sh
#!/bin/bash -v
#SBATCH --partition=GPUSP4 # partition name. lince = 'GPUSP4', aguia = 'SP2'
#SBATCH --job-name=tr-ae # job name
#SBATCH --nodes=1 # number of nodes allocated for this job
#SBATCH --ntasks=2 # total number of tasks / mpi processes
#SBATCH --cpus-per-task=8 # number OpenMP Threads per process
#SBATCH --time=08:00:00 # total run time limit ([[D]D-]HH:MM:SS)
#SBATCH --gres=gpu:tesla:2 # number of GPUs
Get email notification when job begins, finishes or fails
#SBATCH --mail-type=ALL # type of notification: BEGIN, END, FAIL, ALL
#SBATCH --mail-user=your@mail # e-mail address

OpenMP settings used for parallel processing.
Check your library documentation for custom configuration (Tensorflow, PyTorch, Dask,␣
→˓etc)
Reference: https://www.openmp.org/spec-html/5.0/openmpch6.html#openmpse50.html
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
export OMP_PLACES=threads
export OMP_PROC_BIND=spread

Slurm controller sets these variables in the environment of the batch script
More variables at https://slurm.schedmd.com/sbatch.html#lbAK
echo $SLURM_JOB_ID # ID of job allocation

(continues on next page)

1.7. Slurm 35

https://youtu.be/U42qlYkzP9k
https://slurm.schedmd.com/man_index.html

USP HPC, Release 0.0.1

(continued from previous page)

echo $SLURM_SUBMIT_DIR # The directory from which sbatch was invoked
echo $SLURM_JOB_NODELIST # List of nodes allocated to the job
echo $SLURM_NTASKS # Total number of cores for job

Load modules. Use "module avail" to list available modules.
This example loads a custom module.
module use --append /scratch/11568881/modulefiles/
module load Miniconda/1.0

Run the application.
echo [`date '+%Y-%m-%d %H:%M:%S'`] Running $AE_ARCH
srun <train_model.py>

UiT The Arctic University of Norway provides additional job script examples.

1.8 GPU Usage

Each lince server has 2 NVIDIA Tesla GPUs installed. This cluster should be used to run GPU jobs; if you don’t need
GPU then use aguia instead.

You may check the GPU usage with the nvidia-smi command in any server except the login server which is used
only for job scheduling.

Example of GPU using 67MiB of memory usage, 74% and 0% utilization on GPU 0 and 1 respectively and process ID
29150:

$ nvidia-smi
Sun May 2 16:54:50 2021
+---+
| NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K20m Off | 00000000:05:00.0 Off | 0 |
| N/A 68C P0 106W / 225W | 78MiB / 4743MiB | 74% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K20m Off | 00000000:83:00.0 Off | 0 |
| N/A 30C P8 16W / 225W | 0MiB / 4743MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 29150 C ...gramas/intel/gromacs-5.1.4-cuda/bin/gmx 67MiB |
+---+

Message “No running processes found” on idle GPUs:

$ nvidia-smi
Sun May 2 16:55:18 2021

(continues on next page)

36 Chapter 1. Cluster Architecture

https://hpc-uit.readthedocs.io/en/latest/jobs/examples.html

USP HPC, Release 0.0.1

(continued from previous page)

+---+
| NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K20m Off | 00000000:05:00.0 Off | 0 |
| N/A 36C P8 25W / 225W | 11MiB / 4743MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K20m Off | 00000000:83:00.0 Off | 0 |
| N/A 28C P8 16W / 225W | 0MiB / 4743MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+
$

Example of error message:

$ nvidia-smi
Unable to determine the device handle for GPU 0000:05:00.0: GPU is lost. Reboot the␣
→˓system to recover this GPU

1.8.1 Check all servers

A more practical way to check the GPU usage in all servers is using a script. The gpu_mon.py script connects to each
server and checks the GPU status. Then, it prints a list of servers with idle and falty GPUs, creates a bar plot and sends
an e-mail with GPU usage:

$ python gpu_mon.py
Number of servers: 32

Two GPUs in use: 13 servers.

lince2-003
lince2-005
lince2-008
lince2-012
lince2-013
lince2-014
lince2-017
lince2-018
lince2-020
lince2-021
lince2-026
lince2-027
lince2-032

(continues on next page)

1.8. GPU Usage 37

USP HPC, Release 0.0.1

(continued from previous page)

One GPUs in use: 10 servers.

lince2-001
lince2-002
lince2-004
lince2-009
lince2-011
lince2-016
lince2-023
lince2-024
lince2-025
lince2-028

No GPUs in use: 8 servers.

lince2-006
lince2-007
lince2-010
lince2-019
lince2-022
lince2-029
lince2-030
lince2-031

Faulty GPUs: 0 servers.

Connection failure: 1 servers.

lince2-015

38 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

gpu_mon script:

#!/scratch/11568881/miniconda3/bin/python
#%%
"""
This module collects GPU utilization on all servers in lince cluster. This is useful to␣
→˓help
identify possible improvements in job speed and free resources for other users.
Ideally GPU utilizatin should be high for the most part of the time.

Process:
1. Connect to all servers via SSH and collect GPU usage.
2. Create a data frame with server and both GPUs usage.
3. Create a horizontal bar chart of GPU usage by server.
4. Send a summary and plot by e-mail.
"""
import os, re, datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import smtplib, mimetypes
from email.message import EmailMessage

def message(msg, servers):
"""Format server status message."""
text = '\n'
text += msg + str(len(servers)) + " servers.\n"
text += "-"*30 + "\n"
for server in servers:

text += server + '\n'
return text

def gpustatus(result_fname, summary_fname):
"""Connect to each server and collect GPU information.

Result is saved in a log file.
"""

gpu = {} # GPU utilization
no_gpu = [] # Servers with 0 GPUs in use
one_gpu = [] # Servers with 1 GPU in use
two_gpu = [] # Servers with 2 GPUs in use
gpudown = [] # Servers with faulty GPUs
no_route = [] # Servers with connection failure
servers = [] # List of servers
df = pd.DataFrame(columns = ['Server', 'GPU 0', 'GPU 1'])

for n in range(1, 33):
Connect to each server in the cluster and send commands
server_name = 'lince2-' + ("000" + str(n))[-3:]
servers.append(server_name)
cmd = 'ssh {} "hostname;nvidia-smi"'.format(server_name)
pipe = os.popen(cmd,'r')

print("Processing server:", server_name)
(continues on next page)

1.8. GPU Usage 39

USP HPC, Release 0.0.1

(continued from previous page)

for row in pipe.read().split('\n'):
#lince2-001.hpc.usp.br
server_re = re.search(r'(lince\d-(\d+))\.hpc', row)
#| 0 Tesla K20m Off | 00000000:05:00.0 Off | ␣

→˓ 0 |
gpuId_re = re.search(r'\|\s+(\d)\s+Tesla', row)
#| N/A 62C P0 104W / 225W | 78MiB / 4743MiB | 73

→˓% Default |
utilization_re = re.search(r'B \|\s+(\d+)%\s+', row)

Read server name
if server_re:

server = server_re.group(1)
Read GPU error message
elif "Unable to determine the device handle for GPU" in row:

gpudown.append(server)
Read GPU ID: 0 or 1
elif gpuId_re:

gpuId = int(gpuId_re.group(1)) # GPU 0 or 1
Read GPU utilization
elif utilization_re:

gpu[gpuId] = int(utilization_re.group(1))
if gpuId:

df.loc[len(df) + 1] = server, gpu[0], gpu[1]
Identify number of GPUs in use
if not (gpu[0] or gpu[1]):

no_gpu.append(server) # 0 GPUs in use
elif gpu[0] and gpu[1]:

two_gpu.append(server) # 1 GPU in use
else:

one_gpu.append(server) # 2 GPUs in use

pipe.close()

Connection failure
checked_servers = two_gpu + one_gpu + no_gpu + gpudown
for server in servers:

if not server in checked_servers:
no_route.append(server)

checked_servers += no_route
Summary of GPU usage
n = len(checked_servers)
summary = "Number of servers: {} \n".format(str(n))
summary += message("Two GPUs in use: ", two_gpu)
summary += message("One GPUs in use: ", one_gpu)
summary += message("No GPUs in use: ", no_gpu)
summary += message("Faulty GPUs: ", gpudown)
summary += message("Connection failure: ", no_route)

print(summary)
Save data frame and summary
df.to_csv(result_fname)

(continues on next page)

40 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

(continued from previous page)

with open(summary_fname, 'w') as f:
f.write(summary)

return

def create_plot(result, plot):
"""Create plot of GPU usage per server."""
df = pd.read_csv(result)
Create plot
x = np.arange(len(df['Server'])) # the label locations
width = 0.35 # the width of the bars

fig, ax = plt.subplots(figsize=(15,8))
rects1 = ax.barh(x - width/2, df['GPU 0'], width, label='GPU 0')
rects2 = ax.barh(x + width/2, df['GPU 1'], width, label='GPU 1')

Add some text for labels, title and custom x-axis tick labels, etc.
now = datetime.datetime.now()
dt = now.strftime("%Y-%m-%d %H:%M")

ax.set_title('GPU Utilization by Server - Lince2')
ax.set_xlabel('Utilization (%) - Date: {}'.format(dt))
ax.set_xlim(0, 100)
ax.set_ylabel('Lince Server')
ax.set_yticks(x)
ax.set_yticklabels(df['Server'])
ax.legend()

ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)

fig.tight_layout()

Save and show plot
plt.savefig(plot, dpi=300, bbox_inches='tight')
plt.show()

return

def send_email(receiver, message, plot_fname):
"""Send email with summary of GPU usage and plot."""
Create message and set text content
sender = 'no-reply@lince2.hpc.usp.br'
msg = EmailMessage()
msg['Subject'] = 'Lince: GPUs Status'
msg['From'] = sender
msg['To'] = receiver

Message content
body = """*** Automatic e-mail, do not reply. ***

Status of lince servers.

(continues on next page)

1.8. GPU Usage 41

USP HPC, Release 0.0.1

(continued from previous page)

See attached plot.

"""
body += message
msg.set_content(body)

Attach plot
with open(plot_fname, 'rb') as fp:

file_data = fp.read()
maintype, _, subtype = (mimetypes.guess_type(plot_fname)[0] or 'application/

→˓octet-stream').partition("/")
msg.add_attachment(file_data, maintype=maintype, subtype=subtype,␣

→˓filename=plot_fname)

Send e-mail
with smtplib.SMTP('localhost') as server:

server.sendmail(sender, receiver, msg.as_string())
print("Successfully sent email")

if __name__ == '__main__':
now = datetime.datetime.now()
dt = now.strftime("%Y%m%d_%H%M")
plot_fname = 'plot/gpu_status_{}.png'.format(dt)
result_fname = 'gpu.csv'
summary_fname = 'summary.txt'

1. Execute GPU checks
gpustatus(result_fname, summary_fname)

2. Create plot
create_plot(result_fname, plot_fname)

3. Send result by e-mail
receiver = 'your@email.com'
with open(summary_fname, 'r') as f:

rows = f.readlines()
msg = ''
for row in rows:

msg += row
send_email(receiver, msg, plot_fname)

4. Delete files
for fname in [plot_fname, result_fname, summary_fname]:

os.unlink(fname)

42 Chapter 1. Cluster Architecture

USP HPC, Release 0.0.1

1.9 Useful Linux Commands

1.9.1 Manual pages

The man command provides an online reference manual of any command. For example, use this command to see
reference of ls:

$ man ls

1.9.2 Linux processes

The top command shows CPU and memory usage, running processes and other information. It provides a dynamic
view of the sytem usage:

$ top
top - 14:32:01 up 546 days, 5 min, 6 users, load average: 0.40, 0.33, 0.27
Tasks: 351 total, 1 running, 331 sleeping, 17 stopped, 2 zombie
%Cpu(s): 0.2 us, 0.2 sy, 0.0 ni, 97.0 id, 2.6 wa, 0.0 hi, 0.1 si, 0.0 st
KiB Mem : 13182566+total, 2305124 free, 78298656 used, 51221880 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 49155016 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6763 ganglia 20 0 406312 131972 1376 S 2.7 0.1 17495:02 gmond
6695 ganglia 20 0 632268 15936 396 S 1.8 0.0 21331:43 gmetad
30101 11568881 20 0 162268 2568 1612 R 1.4 0.0 0:00.07 top
11222 mysql 20 0 54.8g 49.1g 4480 S 0.9 39.0 1790:49 mysqld

1 root 20 0 193924 6028 1728 S 0.0 0.0 295:43.67 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:13.83 kthreadd
3 root 20 0 0 0 0 S 0.0 0.0 402:24.01 ksoftirqd/0
8 root rt 0 0 0 0 S 0.0 0.0 0:25.18 migration/0
9 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_bh

10 root 20 0 0 0 0 S 0.0 0.0 544:55.47 rcu_sched
11 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 lru-add-drain
12 root rt 0 0 0 0 S 0.0 0.0 3:27.55 watchdog/0
13 root rt 0 0 0 0 S 0.0 0.0 3:18.02 watchdog/1
14 root rt 0 0 0 0 S 0.0 0.0 1:22.39 migration/1
15 root 20 0 0 0 0 S 0.0 0.0 370:18.79 ksoftirqd/1

1.9.3 Running in background

Connection may drop for several reasons, including computer hibernation. When this occurs, Linux terminates all
processes running in the disconnected terminal and you have to run them again. The simplest way to keep the process
running is sending to background by adding & to the command:

$ sleep 60 &

A message appears when the process ends:

[1]+ Done sleep 60

1.9. Useful Linux Commands 43

USP HPC, Release 0.0.1

To send a running process to the background, suspend execution with <CTRL> + z and execute bg to send to back-
ground:

$ sleep 60
^Z
[1]+ Stopped sleep 60
$ bg
[1]+ sleep 60 &

Bring back to foreground with fg.

1.9.4 screen

The screen command opens a virtual terminal that keeps running even when the main terminal is disconnected.
Another real terminal can connect to it, which makes it useful when installing packages.

Steps to use screen:

1. Open a virtual terminal with the screen command.

2. Run any command or script in this terminal.

3. While the command is running, disconnect the terminal with <CTRL> + a and <CTRL> + d.

4. Run screen -ls to list all virtual terminals.

5. Reconnect with screen -r.

Common options:

• <CTRL> + a c Create a new window (with shell)

• <CTRL> + a “ List all window

• <CTRL> + a 0 Switch to window 0 (by number)

• <CTRL> + a A Rename the current window

• <CTRL> + a S Split current region horizontally into two regions

• <CTRL> + a | Split current region vertically into two regions

• <CTRL> + a tab Switch the input focus to the next region

• <CTRL> + a <CTRL> + a Toggle between the current and previous region

• <CTRL> + a Q Close all regions but the current one

• <CTRL> + a X Close the current region

1.10 Resources for Researchers

1.10.1 Systematic literature review

Parsifal is an online tool designed to support researchers to perform systematic literature reviews within the context of
Software Engineering. Geographically distributed researchers can work together within a shared workspace, designing
the protocol and conducting the research.

As well as providing a way to document the whole process, the tool will help you remind what is important during a
systematic literature review. During the planning phase, Parsifal will help you with the objectives, PICOC, research

44 Chapter 1. Cluster Architecture

https://parsif.al/
https://parsif.al/

USP HPC, Release 0.0.1

questions, search string, keywords and synonyms, selecting the sources, the inclusion and exclusion criterias. Will also
provide mechanisms to build a quality assessment checklist and data extraction forms.

During the conducting phase, you will be able to import bibtex files and select the studies, find duplicates among all
the different sources, execute the quality assessment and extract data from the papers.

1.10.2 Advanced Information Research Skills (AIRS)

Advanced Information Research Skills (AIRS) is a coursework for Higher Degree Research (HDR) students enrolled
in a Doctor of Philosophy (PhD) or Master of Philosophy (MPhil) at Queensland University of Technology (QUT),
Australia. The curriculum content is openly accessible, creative commons licensed and available for use by all.

The curriculum includes:

• formulating a good research question

• advanced search strategies

• sourcing and evaluating quality literature

• bibliographic and data management

• note-taking strategies

• citation analysis and research impact

• collaboration tools

• authorship and academic integrity

• publishing and pathways.

https://youtu.be/Z1mBTHw3xVo

1.10.3 Researcher Academy

Researcher Academy provides free access to countless e-learning resources designed to support researchers on every
step of their research journey. Browse our extensive module catalogue to uncover a world of knowledge, and earn
certificates and rewards as you progress.

RESEARCH PREPARATION

• Funding

• Research data management

• Research collaborations

WRITING FOR RESEARCH

• Fundamentals of manuscript preparation

• Writing skills

• Technical writing skills

• Book writing

PUBLICATION PROCESS

• Fundamentals of publishing

• Finding the right journal

1.10. Resources for Researchers 45

https://airs.library.qut.edu.au/
https://youtu.be/Z1mBTHw3xVo
https://researcheracademy.elsevier.com/

USP HPC, Release 0.0.1

• Ethics

• Open science

• How to publish in premium journals

• Publishing in the Chemical Sciences

NAVIGATING PEER REVIEW

• Certified Peer Reviewer Course

• Fundamentals of peer review

• Becoming a peer reviewer

• Going through peer review

COMMUNICATING YOUR RESEARCH

• Social impact

• Ensuring visibility

• Inclusion and Diversity for Researchers

1.10.4 Reference managers

Reference managers help collect, organize and share references and create citations in various formats. Mendeley and
Zotero are free reference managers.

Mendeley

Mendeley simplifies your workflow, so you can focus on achieving your goals.

Zotero

Zotero is a free, easy-to-use tool to help you collect, organize, cite, and share research.

1.10.5 Datasets

Mendeley

Mendeley Data is a secure cloud-based repository where you can store your data, ensuring it is easy to share, access
and cite, wherever you are.

Search 28.1 million datasets from domain-specific and cross-domain repositories.

46 Chapter 1. Cluster Architecture

https://www.mendeley.com
https://www.zotero.org/
https://www.mendeley.com
https://www.zotero.org/
https://data.mendeley.com/

USP HPC, Release 0.0.1

OpenML

The Open Machine Learning is a public repository for machine learning data and experiments, that allows everybody
to upload open datasets. It integrates with scikit-learn.

https://youtu.be/1N3qATxXrpE

Example:

from sklearn import ensemble
from openml import tasks, flows, Runs

task = tasks.get_task(3954)
clf = ensemble.RandomForestClassifier()
flow = flows.sklearn_to_flow(clf)
run = runs.run_flow_on_task(task, flow)
result = run.publish()

Key features:

• Query and download OpenML datasets and use them however you like

• Build any sklearn estimator or pipeline and convert to OpenML flows

• Run any flow on any task and save the experiment as run objects

• Upload your runs for collaboration or publishing

• Query, download and reuse all shared runs

Tensorflow Datasets

Tensorflow Datasets (TFDS) provides a collection of ready-to-use datasets for use with TensorFlow, Jax, and other
Machine Learning frameworks.

https://www.tensorflow.org/datasets/catalog/overview

https://youtu.be/-nTe44WT0ZI

Google Research

Google periodically releases data of interest to researchers in a wide range of computer science disciplines.

https://research.google/tools/datasets/

Google dataset search

Google provides a search engine for datasets. Discover datasets hosted in thousands repositories.

https://datasetsearch.research.google.com/

1.10. Resources for Researchers 47

https://openml.org/
https://youtu.be/1N3qATxXrpE
https://www.tensorflow.org/datasets/catalog/overview
https://youtu.be/-nTe44WT0ZI
https://research.google/tools/datasets/
https://datasetsearch.research.google.com/

USP HPC, Release 0.0.1

PyTorch

Torch Audio: https://pytorch.org/audio/stable/datasets.html

Torchvision: https://pytorch.org/vision/stable/datasets.html

Torch text: https://pytorch.org/text/stable/datasets.html

1.11 Getting Support

Before getting support, check the FAQ page.

If you need support for shark, aguia or lince, access the support website and click in Usuário:

Then log into sistema USP and click “Chamados->Novo Chamado”

Under “Serviço:” select “Internuvem->HPC (Águia e Lince)”

48 Chapter 1. Cluster Architecture

https://pytorch.org/audio/stable/datasets.html
https://pytorch.org/vision/stable/datasets.html
https://pytorch.org/text/stable/datasets.html
https://atendimentosti.usp.br/otrs/customer.pl?Action=CustomerFAQExplorer
https://atendimentosti.usp.br/

USP HPC, Release 0.0.1

1.12 About

This is the unofficial guide to High-Performance Computing clusters at Universidade de Sao Paulo. I created this
document while configuring the environment to train a machine learning model during my master’s degree research.
It’s quick start guide to help new users setup the development environment, schedule jobs and train ML/DL models
fast. For detailed information on each topic, I suggest searching the Internet.

LinkedIn: https://www.linkedin.com/in/victor-ivamoto/

GitHub: https://github.com/vivamoto/

RPubs: https://rpubs.com/vsi

Tableau: https://public.tableau.com/profile/victor.s.ivamoto#!/

1.12. About 49

https://www.linkedin.com/in/victor-ivamoto/
https://github.com/vivamoto/
https://rpubs.com/vsi
https://public.tableau.com/profile/victor.s.ivamoto#!/

USP HPC, Release 0.0.1

1.13 License

Copyright (c) 2021 Victor Ivamoto

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

50 Chapter 1. Cluster Architecture

	Cluster Architecture
	Client configuration
	PuTTY Configuration
	SSH Configuration
	Test the conection
	Running remote code
	Install OpenSSH
	SSH configuration
	VS Code configuration
	Test the connection
	File transfer with SFTP

	Server configuration
	Install Miniconda and Python libraries
	Check CUDA release
	Install Miniconda
	Install Tensorflow
	Install PyTorch
	Install Dask
	Install RAPIDS

	Installation tests
	Check Tensorflow installation
	Check PyTorch installation
	Check RAPIDS installation

	System information

	Install Google Drive
	Download GDrive
	Edit configuration
	Code compilation
	Access GDrive
	Folder synchronization
	List of options
	Schedule daily backup

	Code development
	Test and debug
	Google Colab setup

	Tensorflow configuration
	Tensorflow installation
	Save the model
	Data format
	OpenMP settings
	CPU optimization
	GPU optimization
	Compiler optimization
	Pipeline optimization
	Distributed computing

	Working with modules
	Create custom module
	Add the module path to MODULEPATH
	Module usage

	Slurm
	Commands
	Job schedule

	GPU Usage
	Check all servers

	Useful Linux Commands
	Manual pages
	Linux processes
	Running in background
	screen

	Resources for Researchers
	Systematic literature review
	Advanced Information Research Skills (AIRS)
	Researcher Academy
	Reference managers
	Mendeley
	Zotero

	Datasets
	Mendeley
	OpenML
	Tensorflow Datasets
	Google Research
	Google dataset search
	PyTorch

	Getting Support
	About
	License

